Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{Ba}_{3} \mathbf{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$, a novel cubic borate

Sangen Zhao, ${ }^{\text {a,b }}$ Jiyong Yao, ${ }^{\text {a }}$ Guochun Zhang, ${ }^{\text {a }}$ * Peizhen Fu^{a} and Yicheng $\mathbf{W u}{ }^{\mathrm{a}}$

${ }^{\text {a }}$ Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China, and ${ }^{\mathbf{b}}$ Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
Correspondence e-mail: g.c.zhang@mail.ipc.ac.cn

Received 10 April 2011
Accepted 28 May 2011
Online 23 June 2011
Single crystals of tribarium diyttrium hexaborate, which crystallized in the cubic system, have been obtained by spontaneous crystallization from a high-temperature melt using $\mathrm{Li}_{2} \mathrm{O}-\mathrm{BaO}-\mathrm{B}_{2} \mathrm{O}_{3}$ as flux. Its structure is composed of isolated $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ groups, irregular BaO_{9} polyhedra and regular YO_{6} polyhedra which occupy alternate sites running along the [111] direction. Irregular BaO_{9} polyhedra and regular YO_{6} polyhedra construct a three-dimensional framework, which is reinforced by $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ groups.

Comment

Rare-earth borates have attracted considerable attention in the past few decades owing to their practical applications as nonlinear optical (NLO) materials (Mills, 1962; Norrestam et al., 1992; Wu et al., 2001; Gravereau et al., 2002) and plasma display panel (PDP) phosphors (Chadeyron et al., 1997). To date, five ternary compounds, $\mathrm{BaYB}_{9} \mathrm{O}_{16}$ (Fu et al., 1987), $\mathrm{Ba}_{3} \mathrm{YB}_{9} \mathrm{O}_{18}\left(\mathrm{Li}\right.$, Wang et al., 2004), $\mathrm{Ba}_{3} \mathrm{Y}\left(\mathrm{BO}_{3}\right)_{3}(\alpha$ and β phases) (Pan \& Wang, 2003; Li, Chen et al., 2004a), $\mathrm{Ba}_{3} \mathrm{Y}_{2}\left(\mathrm{BO}_{3}\right)_{4}$ (Ma et al., 2005) and $\mathrm{BaY}_{3} \mathrm{~B}_{3} \mathrm{O}_{10}$ (Li, Chen et al., $2004 b$), have been reported in the $\mathrm{BaO}-\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}$ system. Herein we describe the crystal structure of a novel borate, $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$. It crystallized in the cubic system, which is very rare in borates [about 1.18% of PDF (ICDD, 2011) compounds containing boron and oxygen crystallize in this system, and the figure is even less in borates, according to Wu et al. (2005)].

The fundamental building unit of $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$ is an isolated $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ group, which is formed by two identical BO_{3} triangles sharing the bridging O 2 atom. Each $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ anionic group connects to six Ba atoms and four Y atoms via O atoms (Fig. 1). The $\mathrm{B}-\mathrm{O}$ bond lengths range from 1.356 (4) to 1.406 (4) \AA and the mean $\mathrm{O}-\mathrm{B}-\mathrm{O}$ bond angles are equal to $120(3)^{\circ}$, which indicates that they are almost planar. These values are normal for the $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ group. The Ba atoms are coordinated by nine O atoms in irregular polyhedra, with
$\mathrm{Ba}-\mathrm{O}$ bond lengths ranging from 2.732 (3) to 3.018 (3) \AA. These values compare well with those of $\mathrm{Ba}-\mathrm{O}$ bond lengths of the nine-coordinate Ba^{2+} ion in $\mathrm{Ba}_{3} \mathrm{YB}_{9} \mathrm{O}_{18}$. The Y atoms appear in two crystallographically different environments. Both Y1 and Y2 atoms are octahedrally coordinated by borate O atoms, forming regular YO_{6} octahedra running right along the [111] direction alternately (Fig. 2). The YO_{6} octahedra are isolated from each other by the intervening BaO_{9} polyhedra and pyroborate groups. The $\mathrm{Y} 1-\mathrm{O} 1$ and $\mathrm{Y} 2-\mathrm{O} 3$ bond distances [2.271 (3) and 2.250 (3) \AA, respectively] are consistent with the sum of crystal radii (Brown \& Altermatt, 1985). Irregular BaO_{9} polyhedra and regular YO_{6} polyhedra are interconnected to each other, constructing a three-dimensional framework which is reinforced by $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ groups.

The structure of the title compound is closely related to that of $\mathrm{Al}_{4} \mathrm{~B}_{6} \mathrm{O}_{15}$ (Ju et al., 2004), which could be described with pseudo-cubic symmetry. The fundamental building unit of $\mathrm{Al}_{4} \mathrm{~B}_{6} \mathrm{O}_{15}$ is the $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ group. Within the $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ group, the $\mathrm{B}-\mathrm{O}-\mathrm{B}$ angle $\left(119.8^{\circ}\right)$ is almost equal to that of $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}\left[122.0(4)^{\circ}\right]$, but the interplanar angle (16.9°) between the two terminal BO_{2} planes is much smaller than that of $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$ [59.0(3) ${ }^{\circ}$]. According to Thompson et al. (1991), the terminal BO_{2} planes pivot about the torsion angles to afford deviations from coplanarity that range from 0 to 76.8°, while the central $\mathrm{B}-\mathrm{O}-\mathrm{B}$ angle ranges from 111.8 to 180°. The O \cdots O repulsive interactions can be relieved by torsional motions which produce nonzero interplanar angles between the two terminal BO_{2} planes. Because of the small interplanar angle, the $\mathrm{O} \cdots \mathrm{O}$ repulsive interactions could not be relieved efficiently, which might be one of the reasons why the compound $\mathrm{Al}_{4} \mathrm{~B}_{6} \mathrm{O}_{15}$ is difficult to synthesize. Because of

Figure 1
The coordination environment of the $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ group. Displacement ellipsoids are drawn at the 80% probability level. [Symmetry codes: (i) $-z+\frac{1}{2}, x+\frac{1}{2}, y$; (ii) $z, x+\frac{1}{2},-y$; (iii) $-y+\frac{1}{2}, z,-x$; (iv) z, x, y; (v) $-x+\frac{1}{2}$, $-y+\frac{1}{2},-z+\frac{1}{2}$; (vi) $-y+\frac{1}{2}, z,-x$; (vii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.]

Figure 2
A projection of the structure of $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15} . \mathrm{BaO}_{9}$ polyhedra and YO_{6} polyhedra construct a three-dimensional framework, which is reinforced by $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]^{4-}$ groups. Atoms Y1 and Y2 occupy alternate sites running along the [111] direction.
the different bond lengths of $\mathrm{Al}-\mathrm{O}, \mathrm{Y}-\mathrm{O}$ and $\mathrm{Ba}-\mathrm{O}$, their coordination environments are different. Each AlO_{6} octahedron shares three independent edges with adjacent AlO_{6} octahedra, while each YO_{6} octahedron shares six interconnected edges with adjacent BaO_{9} polyhedra. Each BaO_{9} polyhedron connects to four BaO_{9} polyhedra and four YO_{6} octahedra by sharing edges.

Bond-valence sums (BVS; Brown \& Altermatt, 1985) were calculated for the $\mathrm{Ba}, \mathrm{Y} 1, \mathrm{Y} 2$ and B atoms as $2.0,3.0,3.2$ and 3.0, respectively. All these values are close to expected values.

Experimental

Single crystals of $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$ were grown from an $\mathrm{Li}_{2} \mathrm{O}-\mathrm{BaO}-\mathrm{B}_{2} \mathrm{O}_{3}$ flux system by spontaneous crystallization. Mixtures of analytically pure $\mathrm{BaCO}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$ in stoichiometric proportions were sintered at 773 K for 24 h , and then sintered at 1123 K for 72 h with several intermediate grindings. Prepared $\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$ polycrystalline samples $(54.090 \mathrm{~g})$ and analytically pure $\mathrm{Li}_{2} \mathrm{CO}_{3}(2.220 \mathrm{~g}), \mathrm{BaCO}_{3}$ $(23.730 \mathrm{~g}), \mathrm{H}_{3} \mathrm{BO}_{3}(18.750 \mathrm{~g})$ were melted in a $40 \times 40 \mathrm{~mm} \mathrm{Pt}$ crucible at 1373 K for 5 h to ensure homogeneity, cooled to 1273 K at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$, and finally cooled to room temperature at a rate of $50 \mathrm{~K} \mathrm{~h}^{-1}$. A clear colourless crystal was physically separated from the melt for analysis.

Crystal data

$\mathrm{Ba}_{3} \mathrm{Y}_{2} \mathrm{~B}_{6} \mathrm{O}_{15}$	$Z=8$
$M_{r}=894.70$	Mo $K \alpha$ radiation
Cubic, $I a \overline{3}$	$\mu=16.05 \mathrm{~mm}^{-1}$
$a=14.253(6) \AA$	$T=153 \mathrm{~K}$
$V=2895(2) \AA^{3}$	$0.22 \times 0.20 \times 0.17 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{i}}$	$3.018(3)$	$\mathrm{Y} 2-\mathrm{O} 3$	$2.250(3)$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.971(4)$	$\mathrm{B} 1-\mathrm{O} 1$	$1.360(4)$
$\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.732(3)$	$\mathrm{B} 1-\mathrm{O} 2$	$1.406(4)$
$\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{iii}}$	$2.862(3)$	$\mathrm{B} 1-\mathrm{O} 3$	$1.356(4)$
$\mathrm{Y} 1-\mathrm{O} 1$	$2.271(3)$		
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 1$	$122.5(3)$	$\mathrm{O} 1-\mathrm{B} 1-\mathrm{O} 2$	$121.2(3)$
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 2$	$116.3(3)$	$\mathrm{B} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{B} 1$	$122.0(4)$

Symmetry codes: (i) z, x, y; (ii) $z,-x,-y+\frac{1}{2}$; (iii) $-y+\frac{1}{2},-z+\frac{1}{2},-x+\frac{1}{2}$; (iv)
$x,-y,-z+\frac{1}{2}$.

Data collection

Rigaku AFC10 diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.635, T_{\text {max }}=1.000$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
43 parameters
$w R\left(F^{2}\right)=0.047$
$S=1.09$
712 reflections

12264 measured reflections
712 independent reflections
704 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The authors thank Professor Kaibei Yu, the State Key Laboratory of Explosion Science and Beijing Institute of Technology, for collecting the single-crystal X-ray diffraction data. This work was supported financially by the National Natural Science Foundation of China (grant Nos. 91022026 and 50932005) and the Beijing Natural Science Foundation (grant No. 2102044).

[^0]
References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Chadeyron, G., Mahiou, R., El-Ghozzi, M., Arbus, A., Zambon, D. \& Cousseins, J. C. (1997). J. Lumin. 564, 72-74.
Fu, W. T., Fouassier, C. \& Hagenmuller, P. (1987). Mater. Res. Bull. 22, 899-909. Gravereau, P., Chaminade, J. P., Pechev, S., Nikolov, V. \& Peshev, P. (2002). Solid State Sci. 4, 993-998.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
ICDD (2011). Powder Diffraction File (PDF). International Center for Diffraction Data, Newton Square, Pennsylvania, USA. http:// www.icdd.com.
Ju, J., Yang, T., Li, G. B., Liao, F. H., Wang, Y. X., You, L. P. \& Lin, J. H. (2004). Chem. Eur. J. 10, 3901-3906.
Li, X. Z., Chen, X. L., Jian, J. K., Wu, L., Xu, Y. P. \& Cao, Y. G. (2004a). J. Solid State Chem. 177, 216-220.
Li, X. Z., Chen, X. L., Jian, J. K., Wu, L., Xu, Y. P. \& Cao, Y. G. (2004b). J. Alloys Compd, 365, 277-280.

Li, X. Z., Wang, C., Chen, X. L., Li, H., Jia, L. S., Wu, L., Du, Y. X. \& Xu, Y. P. (2004). Inorg. Chem. 43, 8555-8560.

inorganic compounds

Ma, P., Chen, J. T., Hu, Z. S., Lin, Z. B. \& Wang, G. F. (2005). Mater. Res. Innovations, 9, 63-64
Mills, A. D. (1962). Inorg. Chem. 1, 960-961.
Norrestam, R., Nygren, M. \& Bovin, J. O. (1992). Chem. Mater. 4, 737743.

Pan, S. K. \& Wang, G. F. (2003). Chin. J. Struct. Chem. 22, 550-552.
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thompson, P. D., Huang, J., Smith, R. W. \& Keszler, D. A. (1991). J. Solid State Chem. 95, 126-135.
Wu, L., Chen, X. L., Li, H., He, M., Xu, Y. P. \& Li, X. Z. (2005). Inorg. Chem. 44, 6409-6414.
Wu, Y. C., Lin, J. G., Fu, P. Z., Wang, J. X., Zhou, H. Y., Wang, G. F. \& Chen, C. T. (2001). Chem. Mater. 13, 753-755.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: OV3004). Services for accessing these data are described at the back of the journal.

